Major Publications

               

1.    Resonant Gravitational Wave Detectors

              

 1)       “Superconducting Tunable‑Diaphragm Transducer for Sensitive Acceleration Measurements,” H. J. Paik, J. Appl. Phys. 47, 1168 (1976).

              

 2)       “Multi‑mode Detection of Gravitational Waves by a Sphere,” R. V. Wagoner and H. J. Paik, in the Proceedings of the Accademia Nazionale dei Lincei International Symposium on Experimental Gravitation (Accademia Nazionale dei Lincei, Rome, 1977), p. 257.

              

 3)       “Superconducting Inductance Bridge Transducer for Resonant‑Mass Gravitational Radiation Detector,” H. J. Paik, Phys. Rev. D 33, 309 (1986).

              

 4)       “Measurement of a High Electrical Quality Factor in a Niobium Transducer for a Gravitational Radiation Detector,” W. M. Folkner, M. V. Moody, and J.-P. Richard, J. Appl. Phys. 65, 887 (1989).

              

 5)       “Noise in a Point‑Contact dc SQUID,” K. R. Carroll and H. J. Paik, J. Low Temp. Phys. 75, 187 (1989).

              

 6)       "Wideband Resonant Lever Transducer for Massive Spherical Gravitational-Wave Detectors," H. J. Paik, G.M. Harry and T.R. Stevenson, in the Proceedings of the 7th Marcel Grossmann Meeting on General Relativity, edited by R. T. Jantzen, G. M. Keiser, and R. Ruffini (World Scientific, Singapore, 1996), p. 1483.

              

 7)       "Electromechanical Transducers and Bandwidth of Resonant-Mass Gravitational- Wave Detectors,” H. J. Paik, in the Proceedings of the 1st Edoardo Amaldi   Conference on Gravitational Wave Experiments, edited by E. Coccia, G. Pizzella, and F. Ronga (World Scientific, Singapore, 1995), p. 201. 

              

 8)              “Detectability of Gravitational Wave Events by Spherical Resonant-Mass Antennas,” G. R. Harry, T. R. Stevenson, and H. J. Paik, Phys. Rev. D 54, 2409 (1996).

              

 9)           “Two-Stage Superconducting Quantum Interference Device (SQUID) Amplifier in a High-Q Gravitational Wave Transducer,” G. M. Harry, I. Jin, T. R. Stevenson, H. J. Paik, and F. C. Wellstood, Appl. Phys. Lett. 76, 1446 (2000).

              

10)           “First Cross-Correlation Analysis of Interferometric and Resonant-Bar Gravitational-Wave Data for Stochastic Backgrounds,” G. M. Harry, M. V. Moody, H. J. Paik, LIGO S4 authors, additional Allegro authors, Physical Review D. 76, 022001 (2007).

              

11)           “Gravitational Wave Detection on the Moon and the Moons of Mars,” H. J. Paik and K. Y. Venkateswara, Adv. Space Res. 43, 167-170 (2009).

 

              
              

2.     Tests of the Laws of Gravity and Search for New Forces

              

 1)             “New Null‑Experiment to Test the Inverse Square Law of Gravitation,” H. J. Paik, Phys. Rev. D 19, 2320 (1979).

              

 2)              “Null Test of the Gravitational Inverse Square Law,” H. A. Chan, M. V. Moody, and H. J. Paik, Phys. Rev. Lett. 49, 1745 (1982).

              

 3)      “Experimental Test of a Spatial Variation of the Newtonian Gravitational Constant at Large Distances,” H. A. Chan and H. J. Paik, in Precision Measurement and Fundamental Constants II, edited by B. N. Taylor and W. D. Phillips, Natl. Bur. Stand. (U.S.) Spec. Publ. 617 (1984), p. 601.

              

 4)      “Precision Gravity Experiments Using Superconducting Accelerometers,” H. J. Paik, in Near Zero: New Frontiers of Physics, edited by J. D. Fairbank, B. S. Deaver, Jr., C. W. F. Everitt, and P. F. Michelson (Freeman, New York, 1988), p. 755.

              

 5)             “Precision Experiments to Search for the Fifth Force,” with J. E. Faller, E. Fischbach, Y. Fujii, K. Kuroda, H. J. Paik, and C. C. Speake, IEEE Trans. Instr. Meas. 38, 180 (1989).

              

 6)             “Tests of General Relativity in Earth Orbit Using a Superconducting Gravity Gradiometer,” H. J. Paik, Adv. Space Res. 9, 41 (1989).

              

 7)             “Detection of the Gravitomagnetic Field Using an Orbiting Superconducting Gravity Gradiometer.  I. Theoretical Principles,” B. Mashhoon, H. J. Paik, and C. M. Will, Phys. Rev. D 39, 2825 (1989).

              

 8)             “Gauss's Law Test of Gravity at Short Range,” M. V. Moody and H. J. Paik, Phys. Rev. Lett. 70, 1195 (1993).

              

 9)             “Constant of Gravity and Composition-Dependent Inverse Square Law Test on STEP,” H. J. Paik, in Perspectives in Neutrinos, Atomic Physics, and Gravitation, edited by J. Tran Thanh Van et al. (Frontiers, Gif-sur-Yvette Cedx, 1993), p. 433.

              

10)          “Principles of STEP Accelerometer Design,” H. J. Paik, Class. Quantum Grav. 13, A79 (1996).

              

11)          “Search for Axions Using a Superconducting Differential Angular Accelerometer,” H. J. Paik, E. R. Canavan and M. V. Moody, in the Proceedings of the 8th Marcel Grossmann Meeting on General Relativity, edited by T. Piran and R. Ruffini (World Scientific, Singapore, 1999), p. 1197.

              

12)          “Cryogenic Test of the Gravitational Inverse-Square Law,” H.J. Paik, K.Y. Venkaswara, M.V. Moody, and V. Prieto, in the Proceedings of the 9th International Conference on Gravitation and Astrophysics (Wuhan, China, 2009).

              

13)          “Feasibility of Measuring the Shapiro Time Delay over Meter-Scale Distances,” S. Ballmer, S. Marka and P. Shawhan, Classical and Quantum Gravity 27, 185018 (2010).

              

              

3.     Superconducting Gravity Gradiometers

              

 1)             “Superconducting Tensor Gravity Gradiometer for Satellite Geodesy and Inertial Navigation,” H. J. Paik, J. Astronaut. Sci. 29, 1 (1981).

              

 2)             “Superconducting Gravity Gradiometer for Terrestrial and Space Applications,” M. V. Moody, H. A. Chan, and H. J. Paik, J. Appl. Phys. 60, 4308 (1986).

              

 3)             “Superconducting Gravity Gradiometer for Sensitive Gravity Measurements. I. Theory,” H. A. Chan and H. J. Paik, Phys. Rev. D 35, 3551 (1987).

              

 4)             “Superconducting Gravity Gradiometer for Sensitive Gravity Measurements. II. Experiment,” H. A. Chan, M.V. Moody and H. J. Paik, Phys. Rev. D 35, 3572 (1987).

              

 5)             “Global Gravity Survey by an Orbiting Gravity Gradiometer,” H. J. Paik, J.‑S. Leung, S. H. Morgan, and J. Parker, EOS Trans. 69, 1601 (1988).

                          

 6)             “Superconducting Accelerometry: Its Principles and Applications,” H. J. Paik, Class. Quantum Grav. 11, A133 (1994).

              

 7)              “Mission Concepts for the Superconducting Gravity Gradiometer,” P. J. Shirron, M. J. DiPirro, S. H. Castles, E. R. Canavan, M. V. Moody, and H. J. Paik, Cryogenics 36, 805 (1996).

              

 8)             “Superconducting Gravity Gradiometers on STEP and GEM,” H. J. Paik and J. M. Lumley, Class. Quantum Grav. 13, A119 (1996).

              

 9)            “Airborne/Shipborne SGG Survey System,” H. J. Paik, E. R. Canavan and M. V. Moody, in the Proceedings of the International Symposium on Kinematic Systems in Geodesy, Geomatics and Navigation (Banff, Canada, June 1997), p.565.

              

10)            “Three-Axis Superconducting Gravity Gradiometer for Sensitive Gravity Experiments,” M.V. Moody,H. J. Paik, and E. R. Canavan, Rev. Sci. Instrum. 73, 3957 (2002).

              

11)            “Principle and Performance of a Superconducting Angular Accelerometer,” M. V. Moody, H. J. Paik, and E.R. Canavan, Rev. Sci. Instrum. 74, 1310 (2003).

             

12)            “Chapter 15: Gravity and Motion Sensors,” H. J. Paik, in SQUID Handbook Vol. 2, edited by J. Clarke and A. Braginski (Wiley, New York, 2006), pp. 545-579.

             

13)            “A Superconducting Gravity Gradiometer for Measurements from a Moving Vehicle,” M. V. Moody, Rev. Sci. Instrum. 82, 094501 (2011).

             

              

4.     LIGO Searches for Gravitational Waves

              

 1)   “Search for Gravitational-Wave Bursts in LIGO Data from the Fourth Science Run,” B. Abbott et al. (LIGO Scientific Collaboration), Classical and Quantum Gravity 24, 5343 (2007).

              

 2)   “Implications for the Origin of GRB 070201 from LIGO Observations,” B. Abbott et al. (LIGO Scientific Collaboration) plus K. C. Hurley, Astrophysical Journal 681, 1419 (2008).

              

 3)   “LOOC UP: Locating and Observing Optical Counterparts to Gravitational Wave Bursts,” J. Kanner, T. L. Huard, S. Marka, D. C. Murphy, J. Piscionere, M. Reed, and P. Shawhan, Classical and Quantum Gravity 25, 184034 (2008).

              

 4)   “Beating the Spin-Down Limit on Gravitational Wave Emission from the Crab Pulsar,” B. Abbott et al. (LIGO Scientific Collaboration), Astrophysical Journal Letters 683, L45 (2008).

              

 5)   “Gravitational-Wave Astronomy: Observational Results and Their Impact,” Peter S. Shawhan, Classical and Quantum Gravity 27, 084017 (2010).

              

 6)   “Searches for Gravitational Waves from Known Pulsars with Science Run 5 LIGO Data,” B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration) plus S. Bigin, A. Corongiu, N. D'Amico, P. C. C. Freire, J. Hessels, G. B. Hobbs, M. Kramer, A. G. Lyne, R. N. Manchester, F. E. Marshall, J. Middleditch, A. Possenti, S. M. Ransom, I. H. Stairs, and B. Stappers, Astrophysical Journal 713, 671 (2010).

              

 7)   “All-sky Search for Gravitational-Wave Bursts in the First Joint LIGO-GEO-Virgo Run,” J. Abadie et al. (LIGO Scientific Collaboration and Virgo Collaboration), Physical Review D 81, 102001 (2010).

              

 8)   “Search for Gravitational Wave Bursts from Six Magnetars,” J. Abadie et al. (LIGO Scientific Collaboration and Virgo Collaboration), Astrophysical Journal Letters 734, 35 (2011).

              

 9)   “Search for Gravitational Waves from Binary Black Hole Inspiral, Merger, and Ringdown,” J. Abadie et al. (LIGO Scientific Collaboration and Virgo Collaboration), Physical Review D 83, 122005 (2011).

              

10)   “A Hierarchical Method for Vetoing Noise Transients in Gravitational-wave Detectors,” Joshua R Smith, Thomas Abbott, Eiichi Hirose, Nicolas Leroy, Duncan Macleod, Jessica McIver, Peter Saulson, and Peter Shawhan, Classical and Quantum Gravity 28, 235005 (2011).

              

              

5.     Reports

              

 1)             “Development of a Sensitive Superconducting Gravity Gradiometer for Geological and Navigational Applications,” H. J. Paik, NASA Contractor Report 4011 (1986).

              

 2)             “Superconducting Gravity Gradiometer Mission, Volume II.  Study Team Technical Report,” S. H. Morgan and H. J. Paik, NASA Technical Memorandum 4091 (1988).

              

 3)             “Superconducting Gravity Gradiometer Mission, Volume I.  Study Team Executive Summary,” S. H. Morgan and H. J. Paik, NASA Technical Memorandum 4091 (1989).

              

 4)             “Development of a Superconducting Six‑Axis Accelerometer,” H. J. Paik, J. W. Parke, and E. R. Canavan, Final Report to the Air Force, Report No. GL‑TR‑89‑0181 (1989).

              

 5)             “Superconducting Gravity Gradiometer Experiment,” H. J. Paik, M. V. Moody, E. R. Canavan, B. G. Bills, P. J. Shirron, M. J. DiPirro, and S. H. Castles, In-STEP (In-Space Technology Experiment) Phase A report to NASA (1995).

            

 6)             “GEOID – Gravity for Earth, Ocean and Ice Dynamics,” M. McNutt et al., an ESSP Mission Proposal to NASA (1996)

             

              

6.     Ph. D. Theses

            

 1)             “Null Test of the Gravitational Inverse Square Law with a Superconducting Gravity Gradiometer,” H. A. Chan, Ph. D. thesis, University of Maryland (1982).

              

 2)             “Noise in a Point-Contact dc SQUID,” K. R. Carroll, Ph. D. thesis, University of Maryland (1987).

             

 3)       "Analysis and Development of a Three-Mode Gravitational Radiation Detector," W. M. Folkner, Ph. D. thesis, University of Maryland (1987).

           

 4)             “Null Test of the Gravitational Inverse Square Law and the Development of a Superconducting Six-Axis Accelerometer,” J. W. Parke, Ph. D. thesis, University of Maryland (1990).

             

 5)             “Low Noise dc Superconducting Quantum Interference Devices for Gravity Wave Detection,” I. Jin, Ph. D. thesis, University of Maryland (1997).

                               

 6)             “Development of an Advanced Inductive Transducer and Detectability of Astronomical Sources of Gravitational Waves,” G. M. Harry, Ph. D. thesis, University of Maryland (1999).

                               

 7)             “Submillimeter Test of the Gravitational Inverse-Square Law Using a Superconducting Differential Accelerometer,” V. A. Prieto, Ph. D. thesis, University of Maryland (2007).

                               

 8)             “Cryogenic Test of the Gravitational Inverse-Square Law Below 100 Micrometer Length Scale,” K. Venkateswara, Ph. D. thesis, University of Maryland (2010).

                               

 9)             “LOOC UP: Seeking Optical Counterparts to Gravitational Wave signals,” J. Kanner, Ph. D. thesis, University of Maryland (2011).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Top