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The dependence of deduced interatomic spacing and inner potential on the lower and upper limits of in-
tegration, k, and k,, as well as the taper width D, was studied for extended absorption fine structure using
sinusoidal model data. The optimal values are achieved when 2(k;+ k)R or 2(k,—k;— D)R equals an
odd half-integral multiple of 7 (rather than when 2k ;R and 2k,R are integral multiples of =), where R is
the spacing. Analytic approximations are used to elucidate numerical computations. Optimization of D is

also discussed.

Extended absorption fine-structure (EAFS) techniques,
i.e., extended x-ray absorption fine structure and many vari-
ants, have become a popular and precise means of deter-
mining interatomic spacings.”? A major advantage of EAFS
is that the analysis generates the spacing directly from a
Fourier transform of the data, as distinguished from the
trial-and-error fitting needed for most techniques. The gen-
eral question we study is what sort of errors are introduced
by the selected lower and upper cutoffs of the data. In par-
ticular, we consider the analysis procedure introduced by
Lee and Beni.> They showed that in an ideal case, when the
zero of energy for electron propagation in the sample is
known, the peak of the magnitude of the Fourier transform
and the peak of its imaginary part coincide at the spacing of
interest. When analyzing real data, then, an inner potential
should be introduced as an adjustable parameter and fine
tuned to produce such coincidence. We followed this ap-
proach using ideal sinusoidal model data for typical experi-
mental parameters.

Our numerical results found that errors made in deducing
spacings due to choice of lower and upper cutoffs were on
average 0.6% (0.003 A for a spacing of 2 A) but could be
more than twice that large. Thus, while negligible for pre-
cisions of +0.01 & or lower, these effects could enter at
higher precision. As might be expected, the ‘‘error’ in the
inner potential is greatest when the error in deduced spacing
is greatest; this error, however, is always below 2 eV and so
not remarkable. Our most noteworthy finding is that, con-
trary to common belief,* it is nor always optimal to start and
to end the Fourier transform at nodes of the data. (The
choice of nodes does minimize ripples in the real-space
spectrum, which could interfere with or obscure peaks due
to more-distant neighbor spacings.’) In order to understand
this behavior, we have obtained an approximate analytic ex-
pression, the derivation of which we sketch below. This ex-
pression accounts semiquantitatively for the deviations in
deduced spacing and inner potential. Given a reasonable
guess of the true spacing R, it provides a simple way to op-
timize the end points. Moreover, we shall show how it can
be used to iteratively improve the result when very high
precision is needed.

Explicitly, we start with the simple transform integral

k
Flru)= [, *h(k)sinl2R (24 u) Plexp(—2ikr)dk , (1)
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where u is the inner potential shift from zero and A (k) is a
window function having value unity between k;+ D and
k,—D. For our numerical work we used the commonly
employed modified Hanning (or Tukey)® window, which has
the form {l1—coslw(k—k;)/D1}/2, j=1,2, within D of
each end point. To find the peaks of the imaginary part and
the magnitude of F, we consider f=90,F, where 9, denotes
the partial derivative with respect to r. The Lee-Beni solu-
tion corresponds to the intersection of the curves
filru)=Imf=0 and f,(r,u)=|f|?=0. (We use magni-
tude squared rather than magnitude for calculational con-
venience.) To find these curves for roots near O= (R, 0),
we generalize Newton’s method to a function of two vari-
ables, i.e., we Taylor expand to lowest order about O and
set the result to zero. The curves, of course, are two
straight lines:

anE(ra—R)=an+bauw a=i,s » (2)

where  ao=—f4(0)/8,/a(0), bo=—0,a(0)/8,£(0),
and & is the error in deduced spacing. To obtain tractable
results, we made several approximations. We assumed
2Rk, (and 2Rk;) >> 1 so that we could take just the lead-
ing terms in these factors. We replaced integrands like
sin?(2kR) by %, equivalent to assuming 2R (k;— k)
>> 7/2. Finally, we assumed that D << k,k,. In the Ap-
pendix we list our simplified approximate expressions for
the components of Eq. (2). The most noteworthy feature of
the formulas is that all the partials are monotonic; hence,
just £;(0) and f,(0) will determine the optimal limits.

For specificity, we -take R =2 A and choose =k,
<37/2 A 'and 37 < k,=<7n/2 A~!, comparable with the
limits used in surface extended x-ray-absorption fine struc-
ture (SEXAFS) and extended appearance potential fine
structure. We step each end point by increments of 7/16.
For D we use m/16, a value smaller than typical choices.
We find b, ~— — b;—0.02: the two lines have similar size
slopes in the (r,u) plane with opposite sign. In other
words, as u is raised, the peak in the imaginary part moves
linearly to greater r while that in the magnitude (squared)
moves to smaller r. Solving for the point of intersection of
the two lines given by Eq. (2), we see

3= (asbi—_albs)/(bi~ bs): u= (as~ ai)/(bi— bs) . (3)

For our data set g; can be positive or negative but its magni-
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tude is always less than about 0.002; a; is generally an order
of magnitude larger (and also can have either sign) so that
we can approximate & by agb;/(b;— bs) or roughly a,/2.
Referring to Eq. (A3), we see that

asc COS[2(k1+k2)R ]COS[Z(kz—kl—D)R ] .

Thus 8| will be minimal when either 2(k,+k,)R or
2(ky;—k1— D)R approaches a half-integral multiple of = and
will be maximal when they approach integral multiples of .
Hence it is the combination of the two end points rather
than either individually that is significant. Furthermore, if
ki and k, are both at nodes of sin(2kR ), then 2(k;+ k,)R
will certainly be at an integral multiple of =, while
2(k,— k1— D)R will be 2DR modulo 7.

Notice from Egs. (A1), (A2), and (A3) that this 2DR
also appears as the argument of the cosine in the prefactor
[i.e., A (R,D)] of both a.s. The conventional choice for D
of a tenth the k range (typically ~7 A~! for SEXAFS or
electron-induced equivalents)? leads a value of 2DR near =
for R ~2 A. In cases where high precision is desired, one
ought to adjust the window width, either decreasing or in-
creasing it so that D ~— 7/4R or 3w/4R, respectively. This
procedure could be pursued iteratively, at each stage insert-
ing one’s best estimate of R, although a single iteration
would likely be adequate in any realistic application. The
end points should also be adjusted to minimize the magni-
tude of the cosines in f;(0). Alternatively, one could focus
on the window using 2(k,— k;— D )R, but this latter ap-
proach will generally not be so effective since it only elim-
inates ay, leaving the residual a;.

Returning to the less important variable u, we find from
Eq. (3) its value at the intersection to be —~ ay/(b;— bs)
=8/b; or about 508 A2 (for R =2 &), or about 2005 eV.
Thus the ‘“‘error’ in the inner potential is of the same sign
as that in 8, and is largest when § is largest. In closing, we
remark that our analytic expressions reproduce numerical
calculations of & and u« at the Lee-Beni point to within
10-20%, except for cases with a;,=0. (Then the percentage
difference can be much larger, but the numbers themselves
are about half an order of magnitude smaller than for
a; #0). Finally, our work has not treated the role of ran-
dom noise or of systematic error.
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APPENDIX

We display our analytic approximations for f = 9,F and its
partials, used in Eq. (2).
Let

A(R,D)= (4R)"'Y{1/[4RD/w)*—1]}cos(2DR) . (A1)
Then
fi(0)=—A4(R,D) [k;—% cos(4k,R —2DR)
- k1+-12—) cos(4k,R +2DR)| , (A2)
£:(0)=A(R,D)(ky—k,—D)%os[2(k,+ k)R]
xcos[2(k,—ki—D)R1] , (A3)
8, fi(0)=[k3 + (ky— D)’ —k? — (k,+D)31/3 , (A4)
8,/:(0)=— (ky—k1—D)¥6 , (A5)
8,fi(0)=—(k,—k;—D)R , (A6)
2 2
8./,(0)=R (kz“kl_D)z_—i[[kz_é)‘] -+ 2 ]
Xln[kl(kZ—D)/kl(kl+D)]] . (A7)
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